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Definition of stopping power (stopping force)

• In practice, the “averaged” stopping power is
measured by:
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Energetic charged particles lose their kinetic
energy in matter by collisions and radiations.

• Elastic collision: nuclear stopping power
– Particular for heavy particles with low velocities around 1 keV/u.
– Projectile kinetic energy is transferred to recoiled atoms without

any excitation of electronic systems.

• Inelastic collision: electronic stopping power
– A dominant stopping process for projectiles above 1 keV/u.
1. Electronic excitation and ionization of the target.
2. Projectile excitation and ionization.
3. Electron capture.

• Electromagnetic radiation
– Particular for light particles at extremely high velocities (β~1).

(> 1 MeV for electron)
– Bremsstrahlung (breaking radiation) is dominant.



Stopping power strongly depends on projectile
“velocity”.

• Electronic stopping power has a peak when the projectile velocity is
almost equal to the mean velocities of target electrons <ve>.
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The beam energy deposition profile is
determined by the dE/dx curve.

• The range value has an uncertainty due to probabilistic behaviors of
projectiles in the target (range straggling).

• Energy deposition processes become much more complex when
changes in target properties (n, T, etc.) is not negligible.
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Beam-energy deposition profile is very important
in HIF target design.

• The overall gain of the HIF target strongly depends on the uniformity
and time variation of the black body radiation.

• The density and temperature of the X-ray radiator dynamically
change within a short period of beam irradiation (~20 ns).

• To optimize the HIF target design with hydrodynamic simulations
including ion stopping processes, reliable data of stopping power
over a wide density-temperature range is required.

E ~ 10 GeV
I ~ 10 kA
τ ~ 20 ns



Stopping power data is available only for limited
density-temperature ranges.

• There are reliable databases for
stopping power of cold matter.
(SRIM, NIST, etc.)

• Only a few experimental data for
stopping power of hot matter
(plasma) have been obtained.

• The production of a well-defined
quasi-stable dense plasma
target is difficult because of its
high opacity and pressure.

WDM

Discharge

Z-pinch

Solid (metal)(Cold gas)

X-ray converter

Laser produced

• To describe the ion stopping in hot or warm dense matter, we
are forced to rely on “theoretical” stopping power models
applicable to a wide density-temperature range.



• Low-speed regime
– Lindhard-Scharff-Schiøtt (LSS)

formula can roughly estimate dE/dx.

• Intermediate-speed regime
– Bethe-type formula with effective

charge can describe dE/dx.
• High-speed regime

– Bethe-Bloch formula well
explains dE/dx.

Electronic stopping is divided into three regimes.

• Stopping power for projectiles with velocities more than
0.1 MeV/u (intermediate and high regimes) is important because
it dominates the ion slowing process in a target.
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Bohr classical stopping formula

• Bohr formula gives good results
for α particles and heavy ions
with relatively low velocities.

• Quantum corrections are needed
for light particles with higher
velocities.
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Energy transfer in dipole approximation:

Modified Bessel functions
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• Bethe formula:

• Bloch formula:

Stopping power formulae based on quantal
perturbation theory.

• Bloch formula gives Bethe
formula at a high velocity limit
and Bohr formula at a low
velocity limit.
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• Excitation of conductive electrons in metal.
– Individual excitation
– Collective excitation (plasmon excitation)

• These excitations can be described with a dielectric response function
in free electron gas ε(k,ω).

• The projectile is decelerated by an induced electric field and the
stopping power is written by:

• Lindhard obtained a dielectric response function ε(k,ω) for zero-
temperature electron gas.

• The free electron model can explain that the proportionality of dE/dx to
v (projectile velocity) at v < vF (like LSS), and that to (1/v2)ln(v2) at v > vF
(like Bethe formula), indicating that this model can be applied to
almost all velocity ranges.

Free electron gas model
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Local electron density model

• The free electron model is useful to describe the excitations of
conductive electrons because…
– it can treat the dynamic shielding effect,
– it reproduces the dependency of dE/dx on projectile velocity from

low-speed to high-speed regimes.
• However, for larger target one should take into account inner-shell

electrons.
• The local electron density model uses electron density distribution

function ρ(r), which is determined by Hartree-like or Thomas-Fermi-
like atomic model, instead of uniform electron density ρ used in the
free electron gas model.
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Stopping power of plasma free electrons

• Stopping power of plasma free electron
can be naturally calculated by free
electron gas model by using a plasma
dielectric response function.

• Inside the Debye radius λD, the energy
transfer is occurred by binary collisions
between the projectile and the free
electron.

• The projectile energy is transferred to
free electrons outside the Debye radius
via collective (plasmon) excitations.

Z1e, M

v

Individual excitation

Collective (plasmon)
excitationDebye length λD

! 

G(x) = erf(x / 2) " # /2x exp("x 2 /2)

! 

"
dE

dx

# 

$ 
% 

& 

' 
( 
free

= "
dE

dx

# 

$ 
% 

& 

' 
( 
indiv

+ "
dE

dx

# 

$ 
% 

& 

' 
( 
coll

=
4) (Z1e

2
)
2

mv
2

G(v /vth )ln
0.764v

bmin* p

# 

$ 
% % 

& 

' 
( ( 

! 

bmin =min{bmin
(c )
, bmin

(q )
}

! 

"
dE

dx

# 

$ 
% 

& 

' 
( 
free

)
4* (Z1e

2
)
2

mv
2

ln
+mv 3

Z1e
2, p

# 

$ 
% % 

& 

' 
( ( 

For v >> vth = (kT/m)1/2 

Bohr formula with ωp instead of <ω>

! 

"
D

= 4#ne2 /m



Stopping power of partially ionized plasma

• Free electrons and bound electrons are treated separately.
• To describe the stopping power of WDM, bound electrons and

free electrons should be treated seamlessly with a unified
stopping power model.
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Z:　mean ion charge

Z1　: projectile charge
Z2　: target atomic number
m　: electron mass
v　: projectile velocity
vth: electron thermal

velocity



• Production of dense plasmas from a solid target by pulsed ion beams:
▬ Thin target → Homogeneous and efficient heating using “Bragg peak”
▬ ≈ 1 MeV/u heavy projectiles → Moderate cost

Depth in the target

Bragg peak

Thin target“Bragg curve”

Homogeneous
heating

0

high-speed regime

Incident velocity
≈ mean electron velocity

q+

Intermediate-speed
regime 

cf. GSI experiments

Pulsed heavy-ion beams are one of the options to
produce “Warm Dense Matter (WDM)” in laboratories.



• Bragg curve ≈ −dE/dx as a function of the projectile energy (reversed)

• Bound* / free electron velocity can change with target conditions:
▬ Phase (gas, liquid, solid, plasma; atomic, molecular, crystal, ⋅⋅⋅⋅⋅⋅)
▬ Density, temperature       *In WDM, contribution of bound electrons are dominant.

→ Bragg-peak position /
     height can also change!

• Typical kinetic energy (velocity ve) of electrons
= typical potential energy (virial theorem)

≈ “mean excitation (ionization) energy I ”
Q

Depth in the target Projectile energy

−dE/dxSpecific
ionization

Bragg curve:

≈

Projectile velocity vp
≈ electron velocity ve q+

e-

vp

ve

Target
electron

Projectile

≈

Zt+ e−

e−

e−

ve

ve ve

Change of Bragg-peak position / amplitude can induce
unwanted perturbation to the scheduled hydro motion.



 Mean excitation energy I ≡ logarithmic mean of the excitation energy:

– f0n: Dipole oscillator strength for 0 → n transition
– Detailed data on the wave functions for

all excited states are needed for calculation!
 Simple alternative: “Local plasma approximation”:

– Atom / molecule ≡ inhomogeneous electron gas
– Local (position = r) plasma frequency ωp(r)
→ Dynamical response of the electron cloud

– Excitation energy ≈ local plasmon energy
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Electron cloud
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Electron density
distribution ρ(r)
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↔  Plasmon energy hωp(r)

“Local plasma approximation” was applied
to simply calculate the mean excitation energy I.



• Differential scattering cross section for isotropic electron velocity
distribution:

• Projectile charge q was roughly estimated
by a simple Thomas-Fermi scaling:

• Stopping cross section S can be
calculated by integrating dσ/d(ΔE)
over all possible energy transfer:

Minimum ΔE = I

ΔE: Energy transfer
to one electron

To take into account the target electron motion, dE/dt was
calculated based on a classical collision theory for two moving
charged particles.



• Phase-space (r, p) distribution of electrons around a nucleus:

• Fermi energy EF (chemical potential µ) was determined
by the neutrality within the “Wigner-Seitz radius RWS”:

• Electrostatic potential V(r):

• The electron density distribution is recursively given by
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A finite temperature Thomas-Fermi model was used to obtain
electron density function ρ(r).



• Bound-electron component:

• Free-electron component:

• These integrals were evaluated analytically in part, using tables of
complete- and incomplete Fermi-Dirac integrals:
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0

r
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By partially integrating fe(r,p), distributions of bound- and
free electrons were separately calculated.



• Temperature-dependence of ρ(r) at natom = 1021 cm−3:
▬ Even at the room temperature, weak

pressure ionization is observed.
▬ For high kT, bound electron density in the

outer shell decreases by thermal ionization.
• Behavior of −dE/dx for fixed density:
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When the target is heated, the Bragg peak moves deeper
inside the target, and the stopping is enhanced.



• Density-dependence of ρ(r) at kT =1 eV:
▬ For low densities, we see a core part

and a peripheral thermal part.
▬ For high densities, the thermal part is

compressed into the core part.
• Behavior of −dE/dx for fixed temperature:
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When the target expands, similar effects are
expected for the Bragg-peak position / height.



The developed stopping power model almost reproduced
SRIM stopping power data.



• Electron density distribution in a hydrogen molecule H2 was calculated
using a valence-bond (VB) type approximated wave function.
▬ 1s-atomic wave function (ground state)

▬ “Heitler-London” type molecular wave function:

▬ Electron density distribution:
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As a simplest phase transition of the target matter,
dissociation of hydrogen molecule was investigated.



• Electron density distribution ρ(r) and evaluated mean excitation
energies I per atom:

0.87 Å

(a)
HHH

(b)

I = 12.2 eV I = 14.8 eV

Atomic
hydrogen

Molecular
hydrogen

ρ(r) ρ(r)

4.8 eV

for dissociation

By using the electron distribution, mean excitation
energies of H and H2 were evaluated.



• Stopping cross section (per atom) for molecular and atomic hydrogen
targets:
▬ Zeff=Z1=1 (proton) is assumed for all projectile energies.
▬ Bragg-peak is observed at vp ≈ 2ve, owing to isotropic motion of target

electrons.
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Bragg-peak position / height can be influenced
by dissociation of molecules.



An electromagnetically driven shock tube was
developed for beam-plasma interaction experiments.

• A strong shock wave was driven by the piston discharge plasma
accelerated by jxB force.

• The parameters of the shock-produced plasma can be controlled by shock
velocity and easily predicted by Rankin-Hugoniot relation.

• Warm hydrogen plasma will be used for benchmark experiments.



• To calculate the stopping power of warm dense matter in a projectile
velocity range around the Bragg-peak energy, a simple model based
on a classical collision stopping theory with a finite-temperature
Thomas-Fermi statistical model.

• Bragg-peak position / height can change with the target conditions,
such as the density, temperature and the chemical phase.

• Concerning the production of WDM by pulsed ~MeV/u heavy ion
beams, the above effect might influence the quality of WDM, owing to
perturbations of the energy-deposition profile and hydro motion of the
heated matter.

• A electromagnetically-driven shock tube was developed to perform
benchmark experiments for stopping-power models.

Summary


